19 research outputs found

    Assessing professionals' adoption readiness for eMental health:Development and validation of the eMental health adoption readiness scale

    Get PDF
    BACKGROUND: The last few decades have witnessed significant advances in the development of digital tools and applications for mental health care. Despite growing evidence for their effectiveness, acceptance and use of these tools in clinical practice remain low. Hence, a validated and easy-to-use instrument for assessing professionals’ readiness to adopt eMental health (EMH) is necessary to gain further insights into the process of EMH adoption and facilitate future research on this topic. OBJECTIVE: The aim of this study is to develop and validate an instrument for assessing mental health care professionals’ readiness to adopt EMH. METHODS: Item generation was guided by literature and inputs from mental health care professionals and experts in survey development. Exploratory factor analyses were conducted on an initial set of 29 items completed by a sample of mental health care professionals (N=432); thereafter, the scale was reduced to 15 items in an iterative process. The factor structure thus obtained was subsequently tested using a confirmatory factor analysis with a second sample of mental health care professionals (N=363). The internal consistency, convergent validity, and predictive validity of the eMental Health Adoption Readiness (eMHAR) Scale were assessed. RESULTS: Exploratory factor analysis resulted in a 3-factor solution with 15 items. The factors were analyzed and labeled as perceived benefits and applicability of EMH, EMH proactive innovation, and EMH self-efficacy. These factors were confirmed through a confirmatory factor analysis. The total scale and subscales showed a good internal consistency (Cronbach α=.73-.88) along with acceptable convergent and predictive relationships with related constructs. CONCLUSIONS: The constructed eMHAR Scale showed a conceptually interpretable 3-factor structure having satisfactory characteristics and relationships with relevant concepts. Its ease of use allows for quick acquisition of data that can contribute to understanding and facilitating the process of adoption of EMH by clinical professionals

    The influence of music on mood and performance while driving

    Get PDF
    Mood can influence our everyday behaviour and people often seek to reinforce, or to alter their mood, for example by turning on music. Music listening while driving is a popular activity. However, little is known about the impact of music listening while driving on physiological state and driving performance. In the present experiment, it was investigated whether individually selected music can induce mood and maintain moods during a simulated drive. In addition, effects of positive, negative, and no music on driving behaviour and physiological measures were assessed for normal and high cognitive demanding rides. Subjective mood ratings indicated that music successfully maintained mood while driving. Narrow lane width drives increased task demand as shown in effort ratings and increased swerving. Furthermore, respiration rate was lower during music listening compared to rides without music, while no effects of music were found on heart rate. Overall, the current study demonstrates that music listening in car influences the experienced mood while driving, which in turn can impact driving behaviour. Practitioners Summary: Even though it is a popular activity, little is known about the impact of music while driving on physiological state and performance. We examined whether music can induce moods during high and low simulated drives. The current study demonstrates that in car music listening influences mood which in turn can impact driving behaviour. The current study shows that listening to music can positively impact mood while driving, which can be used to affect state and safe behaviour. Additionally, driving performance in high demand situations is not negatively affected by music

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress

    Get PDF
    Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology

    The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress

    No full text
    Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology

    Cardiorespiratory fitness, regular physical activity, and autonomic nervous system reactivity to laboratory and daily life stress

    Get PDF
    The cross-stressor adaptation hypothesis—which posits that adjustment to physical stress as a result of regular physical activity and its effects on fitness crosses over to psychological stress reactivity—has been around for over four decades. However, the literature has been plagued by heterogeneities preventing definitive conclusions. We address these heterogeneity issues in a combined laboratory and daily life study of 116 young adults (M = 22.48 SD = 3.56, 57.76% female). The exposure, i.e., the potential driver of adaptation, was defined in three ways. First, a submaximal test was performed to obtain aerobic fitness measured as the VO2max (kg/ml/min). Second, leisure time exercise behavior, and third, overall moderate-to-vigorous physical activity (MVPA), were obtained from a structured interview. Outcomes were autonomic nervous system (ANS) reactivity and affective responsiveness to stressors. ANS activity was measured continuously and expressed as inter-beat-interval (IBI), pre-ejection-period (PEP), respiratory sinus arrythmia (RSA), and non-specific Skin Conductance Responses (ns.SCR). Negative and positive affect were recorded after each experimental condition in the laboratory and hourly in daily life with a nine-item digital questionnaire. Linear regressions were performed between the three exposure measures as predictors and the various laboratory and daily life stress measurements as outcomes. Our results support the resting heart rate reducing effect of aerobic fitness and total MVPA in both the laboratory and daily life. We did not find evidence for the cross-stressor adaptation hypothesis, irrespective of ANS or affective outcome measure or whether the exposure was defined as exercise/MVPA or aerobic fitness

    A Review of Using Wearable Technology to Assess Team Functioning and Performance

    No full text
    Wearable technology enables collecting continuous in situ data from multiple people in various modalities, which can enhance team research and support, as the dynamic coupling of signals between interacting individuals (i.e., team coordination dynamics) is believed to reflect underlying processes and states of team functioning and performance. We conducted a systematic review on existing literature to evaluate the prospective use of wearable technology in research and practice. Using the IMOI framework as an organizing tool, our review revealed considerable support linking team coordination dynamics in different modalities to team functioning and performance, but also explicated the field's nascent status

    Motivation in home fitnessing : effects of immersion and movement

    No full text
    Abstract. In this paper we explore how we can use technology to help people to stay motivated to do home fitnessing. Two experiments with a total of 48 participants were performed, both deploying a virtual reality in a bicycling task, one focusing of effects of immersion, the other on the intrinsic impact of movement. From the results it becomes apparent that user and technology can cooperate to achieve a optimum home fitnessing experience
    corecore